Code No.: 10433/20433

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH II SEMESTER SUPPLEMENTARY EXAMINATIONS, MAY-2018

Subject: Electronic Circuits

Branch: EEE

Time: 3 hours
Answer any FIVE questions of the following

Max. Marks: 75 5x15M=45Marks

- 1. a) Using the approximate model derive expression for current gain, voltage gain, input impedance and output impedance of CC amplifier.
 - b) Explain the operation of common source FET amplifier.

[8+7]

- a) Draw the equivalent circuit of Common Source amplifier at high frequencies and derive the expressions for Voltage gain, Input admittance and output admittance.
 - b) A three stage amplifier has a first stage Voltage gain of 30, second stage Voltage gain of 200, third stage Voltage gain of 400. Find the total Voltage gain in dB.
 - c) How does a time constant T and rise time t_r influence the bandwidth of amplifiers.
- a) Classify amplifiers based on feedback topology. Explain the topology based on block diagram and equivalent circuit.
 - b) An amplifier has a value of R_{in} = 4.2K Ω , A_{v} =220 and β = 0.01, determine the value of input resistance with feedback.
- 4. a) A crystal has the parameters as L=0.5 H, Cs=0.06 pF and R=5 K Ω . Find the series and parallel resonant frequencies and Q -factor of the crystal. [8+4+3]
 - b) Find the value of C in the RC phase shift Oscillator using BJT designed for a frequency of 1 kHz having the value of R of $10K\Omega$.
 - c) Explain the main difference between an amplifier and an Oscillator.
- 5. a) If the ideal push-pull amplifier operates at maximum dissipation, show that its efficiency is 50%.
 - b) For a given transistor, the thermal resistance is 8°c/w and for the ambient temperature T_A is 27°c. If the transistor dissipates 3W of power, calculate the junction temperature T_i
- 6. a) What is a Clamper? With the help of circuit diagram and waveforms explain the operation of a clamping circuit. [7+8]
 - b) Describe the operation of biased clamper with the help of circuit diagram.
- 7. a) Explain the operation of Punch through Breakdown Mechanism in transistor. [8+7]
 - b) Explain the switching times of a transistor.
- 8. a) Explain the operation of fixed bias Bistable Multivibrator.

[7+8]

b) For the fixed bias bistable multivibrator hfe=50, Vcc=5v, -V_{BB} = -5V, Rc= 1.2 K Ω , R₁ = 6.8 K Ω , R₂ = 47K Ω . Determine the stable state voltages and currents.

MR11 & MR12

Code No.: 10205/20205

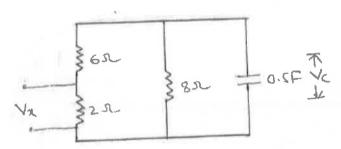
MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH II SEMESTER SUPPLEMENTARY EXAMINATIONS, MAY-2018

Subject: Network Theory

Branch: EEE

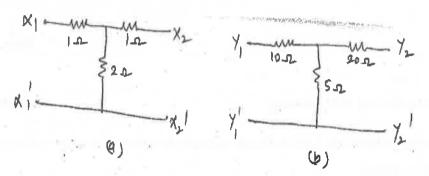

Time: 3 hours

Max. Marks: 75

Answer any FIVE Questions of the following

5x15M=75M

- a) Write the relation between Line & Phase voltages & currents in a star connection for a 3-φ balanced AC system.
 - b) A Three-phase balanced delta-connected load with line voltage, of 200V, has line currents as $I_1=10 \, \sqcup \, 90^\circ$, $I_2=10 \, \sqcup \, -150^\circ$ and $I_3=10 \, \sqcup \, -30^\circ$ (i) What is the phase sequence? (ii) What are The impedances?
- 2. a) Derive the necessary equations for voltage rise in an RC series circuit when it is connected to a DC source.
 - b) A source free RC circuit shown in figure when initial value of voltage across the capacitor is 3V, find the value of capacitor voltage Vc, capacitor current Ic and voltage across 2 ohms resistor.



- 3. a) Derive impulse response of series RL network.
 - b) A series RL circuit with R=50 ohms and L=0.2H has a sinusoidal voltage source v = 150 Sin $(500t+\phi)$ volts applied at a time when y = 0. Find the expression for total current.
- 4. a) Briefly explain a transfer function.

[5]

- b) For the given network function, draw the pole zero diagram and hence obtain the domain response verify the result analytically. $V(S) = \frac{5(s+5)}{(s+2)(s+7)}$ [10]
- 5. a) In what respect are the transmission parameters different from Admittance parameters.
 - b) Obtain ABCD parameters in terms of Hybrid parameters.

- 6. a) What type of parameters are suitable to describe series connection of Two-port Network and drive the expression for resulting parameters.
 - b) Two networks shown in figures (a) and (b) are connected in series. Obtain the Z parameters of the combination. Also verify by direct calculation.

- 7. a) What is High-pass filter, and explain the prototype High-pass filer design.
 - b) Design a High-pass, constant-k type filter with T-section and π -section, when the cut-off frequency is 8 KHz and the nominal characteristic impedance is 500Ω also determine the attenuation and phase constant for frequencies (i) 5KHz (ii) 20 KHz.
- 8. Derive transient response in series RLC circuit with sinusoidal excitation.